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Abstract. Ecological patterns are often fundamentally chronological. However, generalization of data is
necessarily accompanied by a loss of detail or resolution. Temporal data in particular contain information
not only in data values but in the temporal structure, which is lost when these values are aggregated to
provide point estimates. Dynamic time warping (DTW) is a time series comparison method that is capable
of efficiently comparing series despite temporal offsets that confound other methods. The DTW method is
both efficient and remarkably flexible, capable of efficiently matching not only time series but also any
sequentially structured data set, which has made it a popular technique in machine learning, artificial intel-
ligence, and big data analytical tasks. DTW is rarely used in ecology despite the ubiquity of temporally
structured data. As technological advances have increased the richness of small-scale ecological data, DTW
may be an attractive analysis technique because it is able to utilize the additional information contained in
the temporal structure of many ecological data sets. In this study, we use an example data set of high-
resolution fish movement records obtained from otolith microchemistry to compare traditional analysis
techniques with DTW clustering. Our results suggest that DTW is capable of detecting subtle behavioral
patterns within otolith data sets which traditional data aggregation techniques cannot. These results pro-
vide evidence that the DTW method may be useful across many of the temporal data types commonly col-
lected in ecology, as well other sequentially ordered “pseudo time series” data such as classification of
species by shape.
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INTRODUCTION

The study of ecology is fundamentally chrono-
logical, and the challenges ecologists face with
the collection and analysis of their data often
reflect this temporal nature (Wolkovich et al.
2014). Populations rise and fall over years. Cli-
mate, as well as the rates of predation, para-
sitism, and competition vary across time,

affecting behavior, survival, and reproduction of
populations. Analyzing and modeling this data
often requires translating data collected at small
scales into meaningful metrics that can explain
larger phenomenon. This translation, however,
inevitably results in loss of information through
loss of detail and specificity (Levin 1992).
Levin (1992) argues convincingly that simplify-

ing data from the individual to the ecosystem
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scale should be done with the goal of thought-
fully preserving “minimal sufficient detail” to
inform models at larger scales. However, as tech-
nology drives increases in the volume and rich-
ness of data at the individual and local scales
(Hampton et al. 2009, Laurance et al. 2016), it is
reasonable to assume that small-scale data may
now contain more meaningful data. Analyses
that better summarize information-rich data
could increase the meaning of aggregated data.

Recent advances in time series analysis tech-
niques may be an example of just such a tech-
nique (Aghabozorgi et al. 2015). Time series data
contain information not just in the values of the
data, but also in the order of those values (Chat-
field 2003, Cressie and Wikle 2011). Many analy-
sis techniques collapse these data into discrete
time-points, or overall descriptive statistics, in
the process removing temporal structure that
may be more useful than we realize. New time
series analysis tools that have gained prominence
in other fields may allow more nuanced treat-
ment of time series data in ecology, decreasing
the loss of information in time series data due to
aggregation.

One of the most popular time series techniques
is dynamic time warping (DTW). DTW distance
is a distance measure (similar to the familiar
Euclidian or Mahalanobis distance measures)
which describes the similarity of two time series,
or any data set which can be expressed sequen-
tially. It was first developed as a method to
match sounds in speech recognition, where the
speed and accent of speakers can vary despite
the word or phrase being the same, creating
phase shifts that are difficult to match using most
distance metrics (Sakoe and Chiba 1978, Myers
and Rabiner 1981). DTW excels at matching simi-
lar time series which vary temporally and has
been shown to be fast, and highly efficient for
classification (Al-Naymat et al. 2009, Rakthan-
manon et al. 2012). The technique is flexible and
can be applied using existing clustering and clas-
sification methods (Mueen and Keogh 2016,
Sarda-Espinosa 2017).

The DTWdistance describes the Euclidean dis-
tance between two time series, after first “warp-
ing” them into alignment. An accessible and
concise explanation of the mathematical basis
and statistical applications of the technique is
available in Ratanamahatana and Keogh (2004).

Briefly, DTW finds the optimal path across the
matrix created by matching each point in a time
series with each point of a comparison series
(Fig. 1A). This path is found using dynamic pro-
gramming to minimize a cost function for each
sequential step across the matrix, essentially
finding the path which matches the most similar
points in each series. In the case of two identical
time series, the least cost path would be a perfect
diagonal. For misaligned series, the algorithm
matches each point in the two time series with a
one-to-many approach, warping the temporal
dimension to match the two series (Fig. 1B). This
warping technique allows time series to be com-
pared after correction for temporal differences
that would otherwise skew a Euclidean distance
measure.
Despite the increasing popularity of DTW in

big data mining (Keogh and Pazzani 2000, Saku-
rai et al. 2015), artificial intelligence and robotics
(Xu et al. 2014, Cheng et al. 2015), economics
(Lee et al. 2012, Wang et al. 2012), health care
(Ortiz et al. 2016), and speech recognition (Chen
et al. 2015), these techniques have only been
applied in a few cases to ecological data (Debel-
jak et al. 2010, Cope and Remagnino 2012,
Stathopoulos et al. 2014, Tan et al. 2015, Jouary
et al. 2016, Baumann et al. 2017, Weideman et al.
2017).
DTW may be useful for many types of ecologi-

cal data because much of the data that ecologists
collect has a temporal component; for example,
spatial location data of tagged animals, mark–re-
capture data, trends in population density, and
the timing of spring leaf-out, all are either inher-
ently temporal or could be thought of as a time
series. In fact, the use of DTW to analyze
“pseudo time series,” sequentially ordered data
which is not temporal but can be thought of as
such for the sake of analysis, has potentially wide
application in ecology. Identification of plant or
fish species based on shape, or animal movement
patterns, are three examples in the literature
(Ueno et al. 2006, Cope and Remagnino 2012,
Jouary et al. 2016). Even genetics data can be
coerced into a time series format for use with
time series methods (Rakthanmanon et al. 2012).
In many of these cases, it is useful to determine
the similarity or difference between the structure
of data, for example, to classify streams by the
characteristics of their hydrograph or to track the
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timing of phenological events across decades.
Time series clustering tools such as DTW provide
methods which can efficiently cluster similar
time series using all the information contained in

the chronological structure of the data, avoiding
some of the problems associated with data aggre-
gation.
One example of temporally structured data for

which DTW may provide analytical advantages
is the life-time chemical records obtained from
fish otoliths (or ear stones). Over the same period
that time series clustering methods have
matured, the microchemical analysis of fish oto-
liths has taken similarly large strides as an eco-
logical tool, becoming an example of a dramatic
increase in data richness at the individual scale
(Campana 2005, Secor 2010, Walther 2019). With
calcium carbonate rings laid down daily, the oto-
lith is a natural temporal record of the environ-
ment and life history of a fish (Campana and
Neilson 1985). Otoliths record ambient chemistry
which can be used to reconstruct an individual’s
movements, life-history strategies, and environ-
mental conditions through the life of a fish with
remarkable precision (Kennedy et al. 1997, 2002,
Campana and Thorrold 2001, Hamann and Ken-
nedy 2012, Limburg et al. 2013). Studies now
often include multiple chemical and isotopic trac-
ers, each able to reconstruct different multiple
facets of a fish’s life history (Walther and Lim-
burg 2012, Hegg et al. 2018). These new tech-
niques create information-rich, time series data
of a fish from birth to death (Fig. 2A).
While the resolution of data extracted from

otoliths has increased dramatically, analysis tech-
niques have not taken advantage of the increased
information density of high-resolution time ser-
ies data sets. In most cases, data from periods of
interest in the fish’s life are aggregated, creating a
chemical index which can be analyzed as a dis-
crete value, or a vector of values in the multivari-
ate case (Barnett-Johnson et al. 2010, Hegg et al.
2013a, 2018, Garcez et al. 2014). While this is a
valid approach, it risks ignoring or obscuring
valuable information contained in the time series
structure itself whose shape is affected by
growth, movement, and ontogeny.
In this paper, we provide an example of how

DTW can be used to determine natal origin and
life history from a large data set of known-origin
juvenile Chinook salmon otolith transect data.
We demonstrate the ability of DTW to cluster fish
using univariate and multivariate 87Sr/86Sr data.
Next, we compare these results to a more con-
ventional, model-based discriminate function
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Fig. 1. Two otolith 87Sr/86Sr transects of two fish
caught in the LGR reach of the Snake River are shown.
Dynamic time warping computes the amount of warp-
ing on the temporal (x) axis needed to optimally align
two series (A). Dotted gray lines show matching points
along these series computed by DTW (a subsample of
matching points is shown and transects are offset by
0.004 to improve clarity). The optimal warping path
(B) is shown between the two time series. Transects are
re-interpolated to 200 cells but were not z-normalized
prior to comparison.
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analysis using aggregated multivariate data, and
we demonstrate how the two techniques could
be paired to potentially improve location dis-
crimination. We then present the use of nearest
neighbor classification to extend DTW clustering

to classify unknown fish. Finally, we discuss the
utility of DTW methods in ecology more broadly
given our results.

METHODS

Study species
Snake River fall Chinook salmon are a threat-

ened population of fall-spawning Oncorhynchus
tshawytscha in the Snake River of Idaho, a major
tributary to the Columbia River in the northwest-
ern United States (Fig. 3). The population is nota-
ble for a recent shift in juvenile life-history
strategy which recent research suggests heredi-
tary and an example of contemporary life-history
evolution (Williams et al. 2008, Waples et al.
2017). These changes are thought to be driven by
anthropogenic changes related to ten hydro-
power dams which have blocked the majority of
historical spawning habitat and created signifi-
cant changes in the hydrograph and river condi-
tions throughout their current range (Connor
et al. 2005, 2016, Hegg et al. 2013a).
The geology of the major spawning tributaries

in this watershed is diverse both in age and in
rock type, creating significant differences in
water chemistry between the major spawning
areas (Hegg et al. 2013b). Ongoing water sam-
pling throughout the basin has shown that
87Sr/86Sr signatures in the four main spawning
areas of the basin are distinct and that discrimi-
nate function analysis using 87Sr/86Sr can be used
to determine the locations of juvenile and adult
fish using otolith chemistry (Hegg et al. 2013a,
2018).

Otolith collection and analysis
The data used in this study consist of otoliths

collected from known-origin, juvenile fall Chi-
nook salmon from throughout their range in the
Snake River basin as part of a prior otolith study
(Hegg et al. 2018). Juveniles were collected at
three locations from 2009 to 2014 (n = 376) as
part of population surveys conducted across the
spawning areas in the Snake, Grande Ronde, and
Clearwater rivers by United States Fish and
Wildlife Service, Nez Perce Tribe Department of
Fisheries Resource Management, and USGS.
Samples were also obtained from the two hatch-
eries producing Fall Chinook in the basin, Lyons
Ferry Hatchery, and the Nez Perce Tribal
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Fig. 2. Otoliths (A) are laser ablated on a path 90°
from the sulcus (a). This analysis creates a temporally
structured data set for each fish, representing the
chemistry of the rivers they inhabited throughout their
life. These otolith chemical transects (B) are repre-
sented with microns from the core of the otolith on the
temporal (x) axis. Movement timing, growth, and loca-
tion combine to form the shape of the 87Sr/86Sr curve
as a fish moves through different habitats. Otolith
87Sr/86Sr transects for to hypothetical fish inhabiting
the same two habitats, habitats 1 and 3, are shown
(solid and heavy dashed black lines). The otolith tran-
sects for these fish which experienced the same habi-
tats are phase-shifted on the temporal axis, a condition
which is not controlled in Euclidean distance time ser-
ies matching. The flexible temporal dimension in the
DTW method allows for matching these transects
while distinguishing other life-history shapes (fine
dashed black line). The global marine 87Sr/86Sr signa-
ture is shown (b) for reference.
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Hatchery. Some fish were tagged with passive
integrated transponder (PIT) tags, released, and
then, recaptured weeks later when their tag was
detected at Lower Granite Dam, the first dam
fish encounter on their path downstream.

Otolith samples were collected and processed
using established procedures for otolith analysis
(Secor et al. 1992, Hegg et al. 2013a). Detailed
methods for this data set, including laser ablation
and ICP-MS information, are available in Hegg
et al. (2018). Continuous chemical transects from
the core (birth) to the edge (death) were collected

from each otolith, creating a sequential chemical
record throughout the life of the fish (Fig. 2A, B).
This was done using a New Wave UP-213 laser
ablation sampling system. This system was cou-
pled with a Thermo Scientific Neptune multi-
collector inductively coupled plasma mass spec-
trometer (ICP-MS) for 87Sr/86Sr ratio. The abla-
tion system was coupled with a Thermo
Scientific Element 2 ICP-MS to measure elemen-
tal concentrations of calcium (43Ca), strontium
(86Sr), barium (138Ba), magnesium (25Mg), and
manganese (55Mn). Elemental measurements
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Fig. 3. Snake River fall Chinook salmon inhabit the Snake River (a) in the US States of Idaho, Washington, and
Oregon. The extent of spawning for known origin fish in our study (b) is highlighted. The location of the two
hatcheries in the basin is noted with colored dots. The Toucannon and Salmon rivers were not sampled for juve-
niles and produce a very small percentage of the wild fish in the basin. The abbreviations used for each river
reach and hatchery in this study are shown in parentheses next to the name of each reach.
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were calculated as ratios to calcium and
expressed as mm/mol following Hegg et al.
(2018).

Multivariate discriminate function classification
A model-based discriminant function was cre-

ated to classify fish to known location. The goal
was to develop a robust classification which
could than later be applied to unknown adult
fish to inform ecology and management of the
population.

Within our data set, juveniles were assigned to
a known origin based on the location of capture.
Juveniles which were captured and sacrificed
during beach seine sampling were assigned to
the river reach in which they were captured; the
Upper Snake River (USK), the Lower Snake River
(USK), the Clearwater River (CW), or the Grande
Ronde River (GR). Fish that were PIT tagged and
recaptured at Lower Granite Dam were assigned
a second known location in Lower Granite Reser-
voir (LGR). Therefore, it was possible for a fish to
have both a known natal location and a known
downstream location. Some fish were caught in
the dam forebay as a part of prior studies, and
their natal location was not known, although
their migration timing suggested Clearwater
River origin. These fish were assigned only a
known downstream location of LGR. Juveniles
obtained from Lyons Ferry Hatchery (LFH) and
Nez Perce Tribal Hatchery (NPTH) were
assigned to these natal locations, respectively.

We defined the natal signature as the average
of the chemistry between 300 and 400 lm from
the core of the otolith, creating a five-element
vector of chemical signatures for each fish. This
was based on prior research showing this to be
the beginning of stable juvenile signatures (Hegg
et al. 2018). Fish arriving at Lower Granite Dam
can be moving downstream quickly and may
have only recently equilibrated. Therefore, we
averaged the signatures from only the outer
50 lm from the edge to obtain the downstream
signature. Fish captured at LGR with a 87Sr/86Sr
signature far removed from that of LGR were
assumed to be fast moving migrants, fish moving
too fast to have equilibrated to the surrounding
water. These were removed to maintain a consis-
tent training set for the discriminant function.

Classifying fish to location was done using
a model-based discriminant function using

87Sr/86Sr, Sr/Ca, Ba/Ca, Mn/Ca, and Mg/Ca as
independent variables and known location as the
classifier. We used the {mclust} package (version
5.2) for R to build a model-based discriminant
function (Fraley and Raftery 2007, Scrucca et al.
2016). The data set was randomly split into a
training set (80%) and test set (20%), with the
training set used to construct the discriminate
function. Related river reaches were combined
successively until an acceptable misclassification
rate was achieved. The final discriminate func-
tion was then applied to the test set to quantify
its performance on unknown data.

Dynamic time warping cluster analysis
Time series clustering using DTWdistance was

used to identify groups of similar fish based on
the shape of their otolith transects. The DTW
algorithm is extremely sensitive to variation in
mean, requiring all time series to be normalized
(Keogh and Kasetty 2003, Rakthanmanon et al.
2012). In the case of fish life-history transects, this
normalization can be problematic, as the abso-
lute mean of the 87Sr/86Sr ratio is meaningful as a
marker of fish location, and once normalized to a
mean of zero and unit variance, it is possible for
the shape of two otolith transects from different
rivers to look alike, and thus cluster together
despite being meaningfully different.
To remove the location ambiguity created by z-

normalization, we used a two-step clustering
process to partition the transects by mean and
then sub-cluster by DTW distance. The mean of
each 87Sr/86Sr transect was calculated, and means
data were scaled and then clustered using model-
based clustering in the Mclust package for R. Ini-
tial clustering was performed with the intention
of finding the minimum number of clusters
which cleanly separated the known groups. The
clusters obtained from Mclust where then sub-
clustered using DTW distance on both univariate
87Sr/86Sr and multivariate data including the ele-
mental ratios used in the discriminate function
classification in the previous section, “Multivari-
ate discriminate function classification”.
Prior to DTW clustering, a centered, 60-point,

rolling average was used to smooth 87Sr/86Sr
transects. A 10-point rolling average was used
to smooth elemental data, as the longer integra-
tion time during collection of these data
results in smoother data. Transects were then re-
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interpolated to a length of 200 cells, which allow
faster calculation through the implementation of
lower bounds without a loss of the ability to
accurately match time series (Ratanamahatana
and Keogh 2004, Al-Naymat et al. 2009). This
length was used as a rounded approximation of
the mean length of series in the data set. The
mean length of transects was 173 cells, with a
maximum length of 422, a minimum of 61, and a
standard deviation of 61 cells. A comparison of
selected data before and after interpolation is
included in Appendix S1.

Clustering was performed on the univariate
and multivariate transects using the {dtwclust}
package (Sarda-Espinosa 2017) using agglomera-
tive hierarchical clustering {hclust} method in R
with Wards distance. A 5% Sakoe-Chiba window
was employed to decrease processing effort and
limit potentially erroneous warping (Sakoe and
Chiba 1978, Ratanamahatana and Keogh 2004,
Al-Naymat et al. 2009). The Sakoe-Chiba win-
dow limits the amount of deviation from the
diagonal when determining the warping path
between two time series (Fig. 1B). Otolith tran-
sects were z-normalized prior to analysis.

Clustering was exploratory, with a goal to cut
the dendrogram of each group at a location
which minimized the number of clusters while
maintaining clusters which were easily inter-
pretable based on the known origin of the fish
within each cluster. Window size was varied
from 1% to 100% after the optimal number of
groups was found to determine whether adjust-
ing the Sakoe-Chiba window (Sakoe and Chiba
1978) affected the stability of the results.

The same clustering approach was repeated
for univariate data using the Euclidian distance
measure. This was done to test whether DTW
was a superior distance metric over the more tra-
ditional Euclidean distance which does not take
into account temporal warping. Euclidian dis-
tance was not performed on the multivariate
data as there are no packages which implement
multivariate Euclidean distance for time series
clustering.

Combining DTW with discriminate function
analysis

In one case, the discriminant function was
unable to separate two groups of fish from
known locations, the USK and LSK, allowing us

to test the ability of DTW to separate these indis-
tinguishable groups. We applied hierarchical
clustering to the training set data from these con-
founded groups, reserving the test set data to test
the robustness of the grouping using nearest
neighbor classification. For the clustering step,
we used a 5% Sakoe-Chiba window and Keogh
lower bounds. The effect of window size was
tested qualitatively by varying the window from
1% to 100% to test the stability of the clustering
results. We cut the dendrogram to create three
clusters based on the results of the overall DTW
clustering. We then used this cluster solution to
predict the cluster membership of the test set oto-
liths from these confounded groups using 1-
nearest neighbor classification, to test the stabil-
ity of these cluster results to unknown data.
Comparison to known water chemistry from
Hegg et al. (2018) was used to evaluate the verac-
ity of this group membership.

RESULTS

Multivariate discriminate function analysis
Initial data exploration indicated that the LGR

group, as expected, contained a number of juve-
nile fish whose signatures had not equilibrated
and instead reflected signatures of upstream
habitats (n = 22). Additionally, the LSK group
contained one fish caught in the Lower Snake
River and later at LGR which exhibited a very
high, Clearwater River signature. These fish were
removed to provide a robust training set, under
the assumption that adult fish would exhibit a
clear signature in these locations, having had
time to chemically equilibrate.
Additionally, a group of anomalous life-

history transects were identified in the CW
group which did not appear to conform to the
known signatures which a Clearwater origin fish
would experience, nor did they match the
expected patterns or signatures seen in NPTH
fish. All of these fish were captured late in the
year and could potentially be unmarked hatch-
ery juveniles, erroneously identified Spring Chi-
nook from upriver populations, or an unknown
source. To avoid biasing our CW training set,
these fish were excluded (n = 25).
There was significant overlap in the 87Sr/86Sr

signatures between the USK and LSK groups.
Many LSK fish appeared, subjectively, to have
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originated in the USK and moved very early to
the LSK downstream. Evidence of this type of
early movement has been observed in the popu-
lation (Ken Tiffan, USGS, unpublished data).
However, without evidence to clearly identify
these potentially early-moving juveniles, they
were kept within their known-origin groupings.

Model-based clustering resulted in a model
with variable, ellipsoidal and diagonal variance
structures for each group. The initial classifica-
tion attempt resulted in large misclassification
errors between the LSK and USK groups. The
USK and LSK groups were subsequently com-
bined, and the classification was run again. This
final training set classification resulted in an
absolute training error of 3.6% (n = 298), with a
10-fold cross-validation error rate of 12.8%
(SE = 3.3%). Classification of the test set (n = 74)
resulted in an overall classification error rate of
12.2% (Table 1).

Dynamic time warping cluster analysis
Initial model-based clustering on the mean of

each transect resulted in three clearly defined
groupings in the dendrogram which largely cor-
responded to the three major river systems in the
basin (Table 2). The first cluster was made up lar-
gely of transects from the Clearwater River
(n = 101) with high mean 87Sr/86Sr and is
referred to as the Clearwater cluster. Seventeen
samples in this group were from other locations,
the majority of which were of unknown origin.
The second cluster, the Snake River cluster, was a
mixed cluster made up of fish from the Upper

and Lower Snake Rivers, NPTH and LFH hatch-
eries with intermediate mean 87Sr/86Sr transects,
and the third group was made up entirely of fish
from the Grande Ronde River with low 87Sr/86Sr
values.
Univariate DTW sub-clustering.—Univariate

hierarchical DTW sub-clustering of juvenile
87Sr/86Sr transects in the Clearwater cluster sepa-
rated into three clusters (Fig. 4A, Table 2). The
first cluster was made up of 83 fish with a steeply
ascending 87Sr/86Sr profile consistent with the
transition from maternal otolith signature to that
of the Clearwater River. The second cluster sepa-
rated 16 of the fish which were omitted from the
discriminate function in the section above due to
their anomalous signature. The third cluster con-
sisted of fish with an 87Sr/86Sr transect that
quickly ascended toward the Clearwater and
then descended toward the lower signature of
the Snake River. The majority of cluster 3 fish
were of unknown origin and captured in Lower
Granite Reservoir. The remaining fish in cluster 3
exhibited a range of unique patterns.
Univariate DTW sub-clustering of the Snake

River cluster resulted in four distinct clusters
(Fig. 4B, Table 2). Subjectively, cluster 1 con-
tained fish with a signature beginning near the
global marine signature (0.70918) and increasing
toward the signature of the USK. This cluster
was composed of a majority of fish from NPTH
(16) and fish from the LSK which were subse-
quently captured in LGR (9). Cluster 2 appeared
more mixed, with a combination of increasing
signatures similar to cluster 1 and a large number
of invariant signatures from LFH. The majority
of cluster 2 fish were from LFH (18) but large
numbers of fish from other locations as well,
including LSK (13), NPTH (13), and LSK fish
captured in LGR (11). Cluster 3 transects
appeared to be dominated by a signature
decreasing from the global marine signature
toward the USK signature and were dominated
by fish from USK (29). This cluster also included
a large number of fish captured in the LSK reach
(22). Cluster 4 appeared to separate a 87Sr/86Sr
signature decreasing from the global marine sig-
nature before rising and crossing the global mar-
ine signature to end at the signature of the USK
or LGR. The majority of fish in cluster 4 were of
USK origin, later captured in LGR (17) with a
smaller number originating in the LSK (10).

Table 1. Classification accuracy of discriminate func-
tion training set.

Predicted

Observed

CW CRB LFH LGR NPTH USK/LSK

CW 64 0 0 0 0 0
CRB 0 21 0 0 0 0
LFH 0 0 19 0 2 0
LGR 2 0 0 60 0 9
NPTH 2 0 2 0 21 5
USK 0 0 0 2 1 92

Notes: Abbreviations of the observed and predicted fish
locations are Clearwater (CW), Lower Snake (LSK), Upper
Snake (LSK), Lyons Ferry Hatchery (LFH), Nez Perce Tribal
Hatchery (NPTH), and Grand Ronde (GR) Rivers. The Lower
Granite Reservoir is abbreviated to LGR.
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The DTW sub-clustering of the Grande Ronde
cluster resulted in two groups, with cluster 1 con-
taining only a single sample with an anomalous,
increasing 87Sr/86Sr transect (Fig. 5A, Table 2).
The second cluster contained the remainder of
the samples, all of which exhibited a steeply
declining 87Sr/86Sr signature followed by a small
increase at the end of the transect.

Overall, the univariate DTW clustering results
showed some ability to classify fish, though clus-
ters were not unambiguous. Particularly in the
Clearwater River, DTW was able to separate fish
which had already been identified as having an
anomalous signature (cluster 2) and to distin-
guish fish with a likely origin in the Clearwater
which were captured further downstream in
LGR. Sub-clustering of the Snake River cluster
showed some ability to separate hatchery fish
(clusters 1 and 2), and some ability to distinguish
patterns in the 87Sr/86Sr transects which could
distinguish fish originating in the USK and LSK
despite their later downstream movement which

confounded the discriminate function. Varying
the size of the Sakoe-Chiba window had very lit-
tle impact on the DTW results.
Univariate sub-clustering of 87Sr/86Sr transects

using Euclidean distance resulted in very similar
clustering results and dendrograms to the DTW
results. The most significant difference between
the two distance metrics was the ordering of sub-
clusters in the Clearwater River. The details of
these results are not presented to avoid repetition.
Multivariate DTW sub-clustering.—Multivariate,

hierarchical DTW sub-clustering resulted in
more straightforward sub-clustering results.
Multivariate clustering excluded Mg/Ca ratio as
a variable. This was done after determining that
outliers within the Mg/Ca transects resulted in
poor clustering results overall. The interpretabil-
ity of clustering results improved markedly after
removal of Mg/Ca from the data set.
Within the Clearwater River cluster, DTW

identified four distinct cluster groups (Fig. 6A,
Table 3). Cluster 1 was made up of a majority of

Table 2. Results of two-level clustering of known-origin juvenile fish using univariate DTWdistance.

DTW sub-cluster

Clusters of transect mean

Clearwater River Snake River
Grande Ronde

River

1 2 3 1 2 3 4 1 2

CW 79
(78.2)

16
(15.8)

6
(5.9)

— — — — — —

LSK — — — 7
(11.9)

13
(22.0)

29
(49.2)

10
(16.9)

— —

LSK ? LGR — — 1
(2.9)

9
(26.5)

11
(32.4)

8
(23.5)

5
(14.7)

— —

USK — — — — 5
(17.2)

22
(75.9)

2
(6.9)

— —

USK ? LGR — — — 5
(15.2)

— 11
(33.3)

17
(51.5)

— —

LFH — — — — 18
(69.2)

5
(19.2)

3
(11.5)

— —

NPTH — 1
(3.2)

— 16
(51.6)

13
(41.9)

— 1
(3.2)

— —

Unknown 1
(25.0)

— — — 2
(50.0)

— 1
(25.0)

— —

Unknown ? LGR 3
(8.8)

2
(5.9)

9
(26.5)

6
(17.6)

8
(23.5)

2
(5.9)

4
(11.8)

— —

GR — — — — — — — 1
(4.0)

24
(96.0)

Notes: Abbreviations of the known fish locations within the dynamic time warping (DTW) sub-clusters are Clearwater
(CW), Lower Snake (LSK), Upper Snake (LSK), Lyons Ferry Hatchery (LFH), Nez Perce Tribal Hatchery (NPTH), and Grand
Ronde (GR) Rivers. The Lower Granite Reservoir is abbreviated to LGR.

Fish were first clustered by the mean 87Sr/86Sr of the entire transect using k-means, resulting in three broad clusters corre-
sponding to the river of origin (Clearwater River, Snake River, and Grande Ronde River). These clusters were sub-clustered
using hierarchical clustering and dynamic time warping distance on the 87Sr/86Sr transect for each otolith. Sample size in each
sub-cluster is shown, with the percentage of each known-origin group shown in parentheses.
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Fig. 4. Univariate hierarchical DTW sub-clustering of juvenile fish 87Sr/86Sr transects are shown. Panel A rep-
resents the DTW sub-clustering of the initial Clearwater River k-means cluster. Panel B represents the DTW sub-
clustering of the initial Snake River k-means cluster. DTW clusters are numbered within each panel. Dashed lines
show the height the dendrogram was cut to determine the cluster solution. Transects are colored by the known
location of the fish. Some fish were captured in their natal location, released, and recaptured downstream in
LGR. The blue horizontal line represents the global marine value of 87Sr/86Sr (0.70918) for reference. Each river
reach is color coded and denoted by its abbreviation from Fig. 3; the Clearwater (CW), Lower Snake (USK),
Upper Snake (USK), and Grande Ronde (GR). River reaches as well as the Nez Perce Tribal Hatchery (NPTH),
and Lyons Ferry Hatchery (LFH) locations and Lower Granite Reservoir (LGR).
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Fig. 5. Results of hierarchical DTW sub-clustering of juvenile fish are shown for the Grande Ronde River k-
means cluster. Panel A represents the univariate DTW sub-clustering of the initial Grande Ronde River k-means
cluster using 87Sr/86Sr. Panel B represents the multivariate DTW sub-clustering of the same cluster using 87Sr/86Sr
in addition to trace element ratios of Sr/Ca, Ba/Ca, and Mn/Ca. DTW clusters are numbered within each panel.
Dashed lines show the height the dendrogram was cut to determine the cluster solution. All fish shown had a
known capture location in the Grande Ronde River. Some fish were captured in their natal location, released,
and recaptured downstream in LGR. The blue horizontal line represents the global marine value of 87Sr/86Sr
(0.70918) for reference.
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Fig. 6. Multivariate, hierarchical DTW sub-clustering of juvenile fish using 87Sr/86Sr, Sr/Ca, Ba/Ca, and Mn/Ca
transects are shown. Panel A represents the sub-clustering for the Clearwater River k-means cluster. Panel B rep-
resents the sub-clustering for the Snake River k-means cluster. Dashed lines show the location the dendrogram
was cut to determine the cluster solution. Transects are colored by the known location of the fish. Some fish were
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bal marine value of 87Sr/86Sr (0.70918) for reference. Each river reach is color coded and denoted by its abbrevia-
tion from Fig. 3; the Clearwater (CW), Lower Snake (USK), Upper Snake (USK), and Grande Ronde (GR). River
reaches as well as the Nez Perce Tribal Hatchery (NPTH), and Lyons Ferry Hatchery (LFH) locations and Lower
Granite Reservoir (LGR).
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fish of unknown natal origin captured in LGR
(12) with a single fish from the CW group. Clus-
ter 2 was made up of CW origin fish (20) with a
sharply ascending 87Sr/86Sr transect similar to
Clearwater sub-cluster 1 in the univariate case.
Cluster 3 was made up of 15 samples with the
anomalous transect shape which was excluded
from the discriminate function and one fish from
NPTH. The similarity of the NPTH fish classified
to the same group supports the idea that these
are fish from NPTH which were captured
unknowingly. Further, the fish in this cluster
were all captured late in 2014 which increases
the chances that hatchery juveniles would be
included in sampling. The water in which fish
are held at NPTH is mixed between well and
river sources depending on conditions (Hegg
et al. 2018), which could cause differences in the
87Sr/86Sr curves between cluster 4 and the
known-origin NPTH fish in cluster 2. Alterna-
tively, the possibility of an unknown source can-
not be eliminated.

Sub-cluster 4 in the Clearwater River cluster
contained fish predominantly of CW origin, with
2 fish of unknown natal origin, one fish of

unknown origin captured in LGR, and 1 with
LSK natal origin captured in LGR. The 87Sr/86Sr
transects for cluster 4 showed a similar sharply
ascending pattern as cluster 2. However, they
were distinguished by an ascending pattern in
Ba/Ca, Mn/Ca, and Sr/Ca, while cluster 2 dis-
played a sharp peak in Ba/Ca and Sr/Ca. The rea-
sons for the differences in the shape of the
elemental ratio transects are unknown, but it is
possible that this represents a meaningful differ-
ence in life history despite the similarity in
87Sr/86Sr profile.
Sub-clustering of the samples from the Snake

River cluster using multivariate DTW resulted in
6 well-defined clusters (Fig. 6B). Cluster 1 dis-
played a descending pattern of 87Sr/86Sr ratios
beginning near the global marine signature and
declining toward the 87Sr/86Sr signature of the
Upper Snake River before rising slightly toward
the global marine signature near the end of the
transect. Elemental ratios showed an increasing
trend in Ba/Ca and Mg/Ca, with a decreasing
trend in Sr/Ca. The cluster contained a majority
of fish with natal origins in LSK, with 38 cap-
tured in LSK and an additional 10 initially

Table 3. Results of two-level clustering of known-origin juvenile fish using multivariate DTWdistance.

DTW
sub-cluster

Clusters of transect mean

Clearwater River Snake River Grande Ronde River

1 2 3 4 1 2 3 4 5 6 1 2

CW 1
(1.0)

20
(19.8)

15
(14.9)

65
(64.4)

— — — — — — — — —

LSK — — — — 38
(64.4)

— — 2
(3.4)

1
(1.7)

18
(30.5)

— — —

LSK ? LGR — — — 1
(2.9)

10
(29.4)

— — 15
(44.1)

4
(11.8)

4
(11.8)

— — —

USK — — — — 24
(82.8)

— — 5
(17.2)

— — — — —

USK ? LGR — — — — 6
(18.2)

— — 2
(6.1)

22
(66.7)

3
(9.1)

— — —

LFH — — — — 26
(100)

— — — — — —

NPTH — — 1
(3.2)

— 1
(3.2)

24
(77.4)

2
(6.5)

— 3
(9.7)

— — —

Unknown — — — 1
(35.)

— — 1
(25.0)

1
(25.0)

1
(25.0)

— — —

Unknown
? LGR

12
(35.3)

— — 2
(5.9)

1
(2.9)

— — 10
(29.4)

6
(17.6)

3
(8.8)

— — —

GR — — — — — — — — — 15
(60.0)

1
(4)

9
(36.0)

Notes: Abbreviations of the known fish locations within the dynamic time warping (DTW) sub-clusters are Clearwater
(CW), Lower Snake (LSK), Upper Snake (LSK), Lyons Ferry Hatchery (LFH), Nez Perce Tribal Hatchery (NPTH), and Grand
Ronde (GR) Rivers. The Lower Granite Reservoir is abbreviated to LGR.

Fish were first clustered by the mean 87Sr/86Sr of the entire transect using k-means, resulting in three broad clusters corre-
sponding to the river of origin (Clearwater River, Snake River, and Grande Ronde River). These clusters were sub-clustered
using hierarchical clustering and multivariate dynamic time warping distance of 87Sr/86Sr, Sr/Ca, Ba/Ca, and Mn/Ca signatures
on the transect across each otolith. Sample size in each group is shown, with the percentage of each known-origin group shown
in parentheses.

 v www.esajournals.org 13 September 2021 v Volume 12(9) v Article e03742

EMERGING TECHNOLOGIES HEGG AND KENNEDY



captured in LSK before being recaptured down-
stream in LGR. Fish from the USK made up the
remainder of the known origin fish in this sub-
cluster, with 24 captured in the USK and 6 ini-
tially captured in the USK before being recap-
tured in LGR.

Snake River sub-clusters 2 and 3 were com-
prised almost entirely of fish captured at each of
the two hatcheries in the study (Fig. 6B). Snake
River sub-cluster 2 showed a largely flat 87Sr/86Sr
transect and highly variable elemental ratios. It
was made up of 26 fish from LFH, comprising all
of the fish from this hatchery included in the
study. A single fish from NPTH was also
included in this cluster. Sub-cluster 3 was simi-
larly made up of hatchery origin fish, with 24 fish
from NPTH comprising the only members of the
group.

Snake River sub-clusters 4 and 5 were com-
prised mostly of downstream migrants captured
in the LSK and USK, respectively, later recap-
tured at LGR (Fig. 6B, Table 3). Sub-cluster 4
was dominated by fish originating in LSK before
being recaptured at LGR (15). The 87Sr/86Sr tran-
sects followed a pattern originating near the glo-
bal marine signature and increasing toward the
signature of the LSK River. Ba/Ca transects
showed an increasing pattern, Mn/Ca exhibited a
peak at 150 cells in the re-interpolated data, and
Sr/Ca showed an increasing pattern with a peak
near the end of the transect. In contrast, sub-
cluster 5 was made up largely of fish originating
in USK before being recaptured in LGR (22). This
group displayed a pattern of 87Sr/86Sr ratios
decreasing below the global marine signature,
toward the signature of the USK, before rising
toward the LSK signature at the end of the tran-
sect. Elemental ratios in this group showed simi-
lar patterns to sub-cluster 4 in Mn/Ca but
decreasing Sr/Ca and a late peak in Ba/Ca.

Snake River sub-cluster 6 contained a majority
of fish captured in LSK (18), with fish from LSK
captured in LGR (4), USK captured in LGR (3),
and NPTH (3) (Table 3). This group displayed an
87Sr/86Sr transect increasing from the global mar-
ine signature toward the LSK signature, with Ba/
Ca and Mn/Ca increasing across the transect and
Sr/Ca decreasing (Fig. 6B).

Sub-clustering of the Grande Ronde cluster
using multivariate DTW resulted in three clusters
(Fig. 5B). Clustering height was an order of

magnitude lower than for the other groups, indi-
cating that clusters were more closely related
(Fig. 5B). Sub-clusters 1 and 3 displayed very
similar 87Sr/86Sr transects but were distinguished
by increasing Ba/Ca and Mn/Ca in sub-cluster 1
and a peak in Ba/Ca and Mn/Ca midway
through the transect for cluster 3. Cluster 2 was
made up of a single fish which displayed a
unique upward trending 87Sr/86Sr signature but
similar elemental ratio patterns to sub-cluster 3.
All of the fish in the Grande Ronde clusters were
captured in the GR (Table 3).
Overall, multivariate DTW provided a cluster-

ing solution that clearly identified known life his-
tories, while also identifying additional life
histories within the data which other methods
did not. Within the Clearwater River, DTW sub-
cluster 1 contains fish captured at LGR with
unknown natal origin. The change from an
increasing 87Sr/86Sr pattern consistent with the
CW early in life to a lower LGR signature later in
life is evident (Fig. 6A). These unknown-origin
fish were collected by USGS in 2012 in the fore-
bay of Lower Granite Dam, and the collection
notes include, “Unknown origin. Likely from
Clearwater but could be hatchery or natural,”
based on the expected timing of outmigration
from the Clearwater River. This provides evi-
dence that the DTW algorithm is able to success-
fully match these fish to their natal location,
despite the change in transect shape caused by
movement into the lower 87Sr/86Sr signature of
LGR. Further, three of these fish demonstrate
movement into LGR at a much earlier point than
the others (Fig. 6A), yet the time warping nature
of DTW and the similarity of their elemental
ratios allow them to be clustered together.
Snake River sub-clusters 1, 4, 5, and 6 support

the finding from the multivariate DFA that USK
and LSK fish are confounded due to early move-
ment (Fig. 6B). Each of these clusters 87Sr/86Sr
transects originates near the global marine signa-
ture in the maternally influenced region of the
otolith (˜0–150 lm, Hegg et al. 2018). Transects
then move toward either the signature of the
USK which is below the global marine signature
(sub-cluster 1 and 5) or the USK and LGR which
is largely above the global marine signature
(clusters 4 and 6) during the natal period (˜250–
400 lm, Hegg et al. 2018). The changed shape of
the 87Sr/86Sr transect due to movement
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downstream to LGR is clearly visible in cluster 5,
and the addition of elemental transects clearly
delineates this cluster from a similar 87Sr/86Sr
shape for fish originating in the LSK (clusters 4
and 6). Sub-cluster 1, however, contains a major-
ity of fish whose transects clearly end within a
signature lower than the global marine signature
which should indicate an origin in the USK.
Despite this, the majority of fish in this sub-
cluster were captured in LSK. This indicates that
these fish likely originated in the USK, moved
downstream to the LSK, and were captured
before their signatures had equilibrated to the
LSK signature.

Combining DTW with discriminate function
analysis

Multivariate hierarchical DTW clustering of
the confounded USK/LSK samples in the dis-
criminate function training set was done to test
the ability of DTW to separate the confounded
group. This clustering of the confounded USK/
LSK group resulted in three clear clusters
(Fig. 7A, B). The first cluster contained fish origi-
nating in LSK (83%) with a shape similar to clus-
ter 6 in the multivariate sub-clustering above.
The second cluster contained a mixture of fish
captured in the LSK (51%) and USK (45%), but
with an 87Sr/86Sr shape similar to Snake River
multivariate sub-cluster 1 above. The third clus-
ter contained downstream migrants recaptured
in LGR after being initially captured in the USK
(44%) and LSK (41%) before being recaptured in
LGR. The dendrogram did not provide simple
separation of this downstream migrant group
into LSK-LGR and USK-LGR clusters. This result
indicated the ability of DTW to separate LSK fish
from USK fish, as well as fish from each natal
region captured downstream at LGR, based on
the different transect shape produced in each
natal river. Sakoe-Chiba window width did not
have a large effect on clustering results.

Testing this classification using 1-nearest
neighbor to assign group membership resulted
in the majority of the test set being assigned to
the second cluster (Fig. 7C, D). Cluster 1 con-
tained three fish, one captured in LSK and two
downstream migrants captured in LSK and USK,
respectively, and recaptured in LGR. Cluster 2
contained nine fish captured in LSK, three down-
stream migrants originating in LSK and

recaptured in LGR, one fish captured in USK,
and one downstream migrant from USK cap-
tured in LGR. Cluster 3 was made up entirely of
downstream migrants with three fish originating
in LSK and five originating in USK before being
captured in LGR.
Comparison of the cluster transects to the

range of water 87Sr/86Sr signatures collected from
the USK and LSK reaches supports the con-
tention that clusters 1 and 2 separate fish by their
true natal river reach (Fig. 7). Cluster 1 mostly
contains fish with a 87Sr/86Sr signature reflective
of the LSK in the natal region between ˜250 and
450 µm from the otolith core in both the training
and test set, and most were captured in the LSK
reach (Fig. 7). Cluster 2 shows a signature below
the global marine value, reflective of the USK
reach water samples, during the natal period
(˜250–450 µm). This cluster is split between fish
captured in the USK and LSK, despite the sam-
ples having a consistent shape. This similarity in
transect shape provides additional evidence that
early downstream movement is confounding the
87Sr/86Sr signatures of juveniles captured in the
LSK reach. Cluster 3 is made up of a mix of fish
from both LSK and USK natal origins which sub-
sequently display an increasing signature consis-
tent with the LSK water samples prior to
capture, consistent with their known down-
stream migration.
The test set results indicate that the clusters are

robust to transect shape, with test set transects
largely mirroring the 87Sr/86Sr transect shapes
from the training set. Few test set fish were
assigned to cluster 1, making evaluation difficult.
Cluster 2 appeared to robustly contain fish with
a transect shape indicating USK natal origin.
Cluster 3 again contained only downstream
migrants captured in LGR, indicating that this
cluster was robust in identifying the downstream
migrant life history.

DISCUSSION

Finding analytical methods that best “ex-
tract and abstract those fine-scale features that
have relevance. . .in other scales” is particularly
important in ecology (Levin 1992). Our results
indicate that DTW clustering, leveraging the
structured nature of time series data, can dis-
tinguish important groupings in otolith life-
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history data. The ability of DTW to efficiently
use the additional richness in time series data
sets, in effect extracting important fine-scale
features without aggregation data loss, may
be useful for a variety of other ecological data
sets as well.

DTW was very sensitive to life-history differ-
ences recorded in otolith transects. Univariate
87Sr/86Sr data were capable of classifying fish to
location in ways broadly comparable to the tradi-
tional discriminant function technique using
multivariate chemical signatures. Further, DTW

Fig. 7. Multivariate, hierarchical DTW clustering of juvenile fish in the confounded Upper Snake/Lower Snake
(USK/LSK) group from the discriminate function is shown. Clustering was performed on 87Sr/86Sr, Sr/Ca, Ba/Ca,
and Mn/Ca transects. Panel A shows the clustering of fish in the discriminate function training set. The propor-
tion of fish in each training set cluster is shown in Panel B, with the number of fish in each cluster shown within
the colored region of the plot. Panel C shows the clustering of fish in the test set. The proportion of fish in each
test set cluster is shown in Panel D, with the number of fish in each cluster shown within the colored region of
the plot. Fish transects are colored by their location of capture. Some fish were captured, released, and subse-
quently recaptured downstream in Lower Granite Reservoir (LGR). Colored rectangles within each panel show
the range of 87Sr/86Sr values in water samples collected over a long-term study of the Snake River spawning areas
(Hegg et al. 2013a, 2018). The blue horizontal line represents the global marine value of 87Sr/86Sr (0.70918) for ref-
erence.
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identified additional life-history patterns that
were not apparent in the multivariate discrimi-
nate function. The classification of two clearly
different life histories within the Clearwater
River group, including a life-history which were
subjectively identified as different and held out
of the discriminate function analysis, was partic-
ularly interesting (cluster 2; Fig. 4A). This indi-
cates that the use of otolith transect shape may
provide a more robust, data-centered, method to
identify outlying groups rather than simply rely-
ing on expert opinion.

However, univariate DTW clustering was lar-
gely unable to reliably distinguish hatchery fish
in the Snake River group, mixing NPTH samples
with LSK samples due to a similarity in shape,
and clustering LFH fish throughout the remain-
ing clusters (Fig. 4B). Further, univariate DTW
clustering did not perform differently than clus-
tering based on Euclidian distance, which is
somewhat surprising. The outmigration timing
of juvenile Fall Chinook varies significantly both
year-to-year and between individuals within a
natal reach (Connor et al. 2005, 2013, Tiffan and
Connor 2012). This variation in timing would be
expected to negatively affect the Euclidean dis-
tance measure. Standardizing the length of each
time series and clustering first on the mean may
have improved the similarity in shape, or tempo-
ral warping may be low enough to make Eucli-
dean distance a viable measure in this
population. However, in more complex matching
tasks where much more variation and complex-
ity is the norm, such as otolith data of adult fish
or searching for specific movements within a lar-
ger otolith transect, it is likely that the temporal
flexibility of DTW would be superior.

Multivariate DTW clustering was much more
successful and sensitive in classifying fish life his-
tory. In the Snake River group, multivariate
DTW was able to cluster hatchery fish from
NPTH and LFH with a high degree of precision
(clusters 2 and 3; Fig. 6B). Further, despite the
confounding effect of downstream movement,
DTW appeared to separate fish by USK and LSK
natal origin with a high degree of specificity to
transect shape (clusters 1 and 4; Fig. 6B). Further,
DTW was able to distinguish downstream move-
ment from each of these natal locations into LGR
and cluster them separately based largely on dif-
ferences in the shape of trace element transects

between the upper river and LGR (clusters 5 and
6; Fig. 6B).
The ability of DTW to distinguish more subtle

life-history differences is also very interesting.
Both in the Clearwater and in the Grande Ronde
groups, DTW identified clusters which appeared
subjectively similar based on 87Sr/86Sr, the pri-
mary signature used to infer downstream move-
ment, but underlying differences in the shape of
the trace element transects resulted in these fish
being clustered separately. In the case of the
Clearwater River group, these clusters were rela-
tively far removed on the dendrogram (clusters 2
and 4; Fig. 6A), while in the Grande Ronde
group, they were more closely related (clusters 1
and 3; Fig. 5B).
Trace elements in the otolith vary not only in

response to differences in concentration in the
surrounding water, but also in response to differ-
ences in temperature, growth rate, and other
metabolic processes (Campana 1999, Walther
and Limburg 2012, Limburg et al. 2018). This
indicates that while the 87Sr/86Sr transect may
not show differences in life history, the transect
shape of other trace elements may point toward
important differences in the life-history or spatio-
temporal interaction with the surrounding envi-
ronment in some sub-groups of fish with other-
wise similar downstream movement patterns.
The results of model-based discriminate func-

tion analysis show that the traditional approach,
aggregating data into a mean from the natal per-
iod on the otolith, is effective (Table 1). However,
the inability of the multivariate discriminate
function to discriminate juveniles from the USK
and LSK reaches of the Snake River provides an
interesting example of the loss of information
due to aggregation.
The water signatures between the USK and

LSK reaches are significantly different over mul-
tiple years of sampling (Hegg et al. 2013a, 2018).
In this case, early-moving fish may be identified
as LSK when, in fact, they are recent migrants
from the USK reach whose chemistry has not
equilibrated, or whose natal period does not
match the expected 250–450 lm location on the
otolith due to variation in growth rate. Aggregat-
ing these data into a mean value incorporates
these erroneous signals and ignores information
contained in the temporal structure of the otolith
data. Multivariate DTW is able to take the
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temporal dimension of these data into account,
in a quantitative way, to separate the confounded
LSK/USK groups (Fig. 6B). The fact that natal
signatures within each DTW group match the
expected water chemistry of the USK and LSK
reaches (Fig. 7) provides strong evidence of the
usefulness of the DTW method. These results
indicate that DTW incorporates the fish move-
ment, growth, and chemical data in the otolith to
uncover meaningful associations in the data that
traditional methods cannot.

The advantages of DTW as an analytical tool
might be most apparent when combined with
existing analysis techniques. For the data pre-
sented here, discriminant function analysis excels
at pinpointing fish location based on the highly
accurate chemical means that are aggregated
from the natal signature. However, in the case of
the confounded USK/LSK samples, using the
temporal structure of the otolith data through
DTWallows this problem to be resolved (Fig. 7).

The possibilities of DTW extend beyond the
methods presented here. While our analysis is
limited to clustering short time series with equal
lengths, DTW is capable of more flexible pattern
matching. For example, by relaxing the con-
straint that the time series be of the same length,
it is possible to search for short, prototype time
series within longer series (Tormene et al. 2009,
Rakthanmanon et al. 2012). This could be used
to find specific short-term fish behaviors, per-
haps transitions between specific rivers, within
the longer transects of adult fish. In other con-
texts, this could identify specific hydrological
events within many years of hydrograph data, or
specific patterns of phenology across years or
across a landscape. This “open-ended” method
has been used successfully in several examples of
extremely large data sets (Tormene et al. 2009,
Rakthanmanon et al. 2012). The method is also
easily applied to data that is not strictly temporal
but can be sequentially ordered, for species iden-
tification by shape or identification of movement
patterns (Ueno et al. 2006, Cope and Remagnino
2012, Jouary et al. 2016). Also, where good train-
ing data exist DTW combined with nearest
neighbor classification has been shown to be a
robust and accurate classification method (Kate
2015). Further, DTW can be applied to multivari-
ate time series, though careful pre-processing is
required (Mueen and Keogh 2016).

Despite the advances in DTW methods, and
demonstrated utility in other fields, ecology has
not embraced the technique. These methods are
increasingly easy to utilize, with DTW packages
available in multiple popular platforms including
R, Python, Java, and SAS (Leonard and Wolfe
2001, Salvador and Chan 2007, Albanese and Vis-
intainer 2012, Gulzar 2015). Analysis of ecological
data is always a balance between detail and parsi-
mony, and often temporal in nature. DTW pro-
vides an additional tool for ecologists to maximize
the information available to answer ecological
questions by taking advantage of the information
contained in sequentially structured data.
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